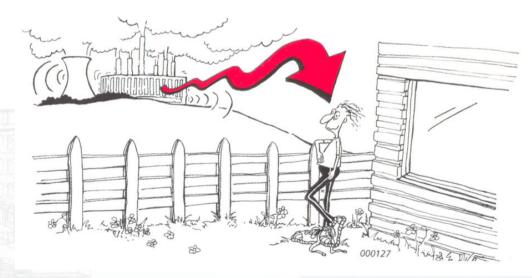


Acoustique environnementale

Acoustique environnementale Chapitre 04 : Propagation du bruit dans l'environnement

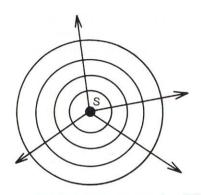
Ing. M. Van Damme

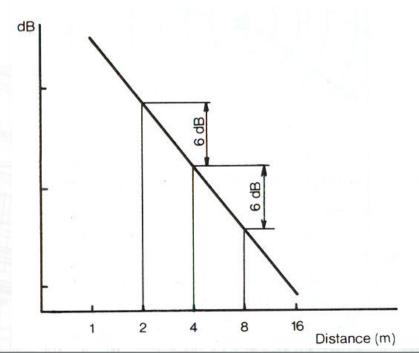

Acoustique Environnementale / Chapitre 04

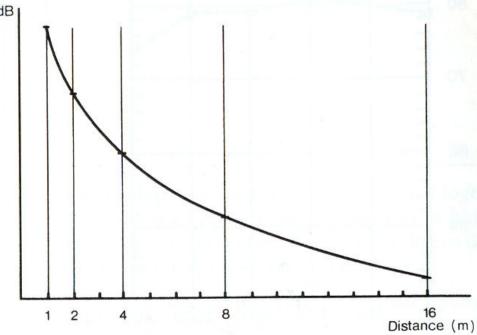
Facteurs essentiels affectant la propagation du bruit

- Type de source (ponctuelle ou linéaire),
- L'éloignement par rapport à la source,
- L'absorption atmosphérique,
- La vitesse et la direction du vent,
- La température et les gradients de température,
- La présence d'écrans acoustiques ou de bâtiments,
- La nature et l'état du sol,
- Les réflexions acoustiques,
- L'humidité relative,
- La présence de précipitations.

Différences parfois > 10 dB entre les mesurages




http://www.bbri.be


Champ libre

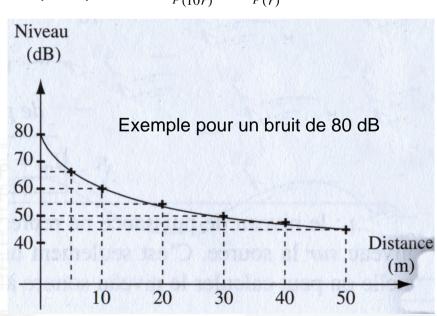
On appelle champ libre un milieu dans lequel les ondes acoustiques se propagent à partir de la source sans rencontrer d'obstacle = cas de figure théorique.

→ Ondes acoustiques propagées sphériques, décroissance théorique de 6 dB par doublement de distance.

http://www.bbri.be

Atténuation en fonction de la distance

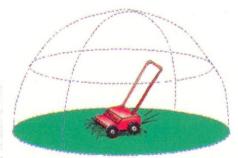
En niveau de pression : $L_{p(r)} = L_{p(1m)} - 20\lg r$


Par doublement de distance : $L_{p_{(2r)}} = L_{p_{(r)}} - 6$

Relation identique que l'on passe de 1 à 2 m, de 2 à 4 ou de 100 à 200.

Relation indépendante de la fréquence.

Distance r (m)	L(r) - L(1 m) (dB)
2	- 6
ie eo5.102 enu'b n	axaatela – 14 ya Tans
10	- 20
20	- 26
30	- 29,5
40	- 32
50	- 34


Source ponctuelle

= source petite comparée à la distance qui la sépare du récepteur.

→ Assimilable à un point.

Exemples : ventilateurs, chéminées d'évacuation.

- → Propagation omnidirectionnelle.
- → Niveau de pression acoustique mesuré , identique en tous points situés à une même distance de la source.
- → LE NIVEAU DE PRESSION ACOUSTIQUE DIMINUE DE 6 dB PAR DOUBLEMENT DE LA DISTANCE.
- → En pratique : décroissance de 4 à 5 dB

Pour une source de niveau de puissance L_w situé à une distance r de cette source, sur un sol plan :

$$L_p = L_W - 20\lg r - 8$$

http://www.bbri.be

Directivité d'une source ponctuelle

La présence d'une surface réfléchissante modifie la directivité de la source selon :

$$L_p = L_W + 10\lg \frac{Q}{4\pi r^2}$$


Avec

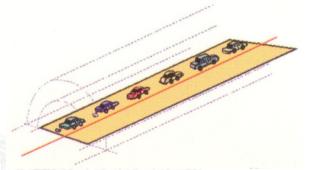
Q : facteur de directivité tel que :

$$Q = 2$$

$$Q = 4$$

$$Q = 8$$

En pratique :
$$L_{p_{\it corrig\'e}} = L_p + C_2$$

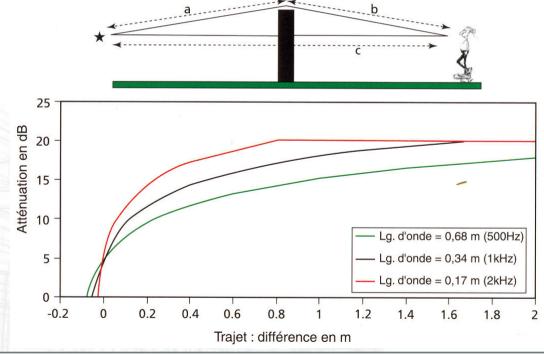

Source linéaire

= source allongée dans une direction.

→ Assimilable à une ligne.

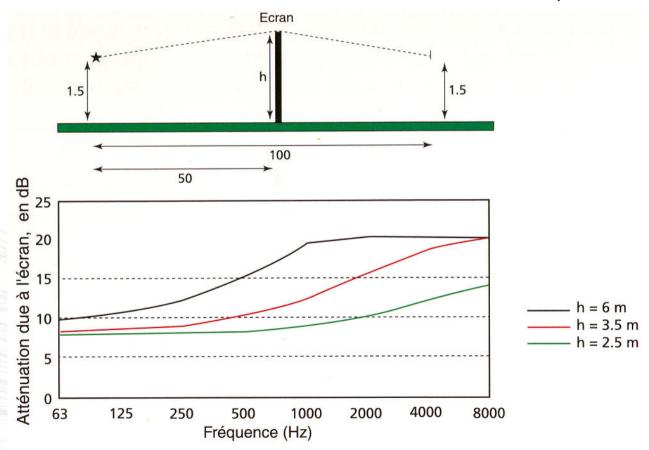
Exemples : conduite transportant un fluide, flux de véhicules sur un axe routier.

- → Propagation cylindrique.
- → Niveau de pression acoustique mesuré , identique en tous points équidistants de la ligne.
- → LE NIVEAU DE PRESSION ACOUSTIQUE DIMINUE DE 3 dB PAR DOUBLEMENT DE LA DISTANCE.


Pour une source de niveau de puissance $L_{\rm w}$ situé à une distance r de cette source : $L_p = L_{\rm W} - 10 \lg r - 5$

Barrières acoustiques – écrans antibruits

L'efficacité d'un écran est essentiellement due à deux facteurs :


- La différence entre le chemin direct et la transmission entre la source et le récepteur et le chemin passant par dessus l'obstacle : a + b - c sur le graphe,
- Le contenu fréquentiel du bruit (fonctionne moins bien aux basses fréquences).

Barrières acoustiques – écrans antibruits

Effet de barrière d'un écran antibruit en fonction de sa hauteur. Proximité source/récepteur = efficacité

Absorption atmosphérique

Phénomène complexe, dépendant de nombreux facteurs :

- Éloignement de la source,
- Contenu fréquentiel du bruit,
- Température ambiante,
- Humidité relative,
- Pression atmosphérique.
- → l'absorption atmosphérique a peu d'effet sur les bruits riches en basses fréquences.

Les basses fréquences peuvent se propager très loin (ex. des séismes).

Courbes de référence : par exemple, à 4000 Hz, pour une température de 20°C et une HR de 30 % : atténuation par dissipation = 50 dB/km.

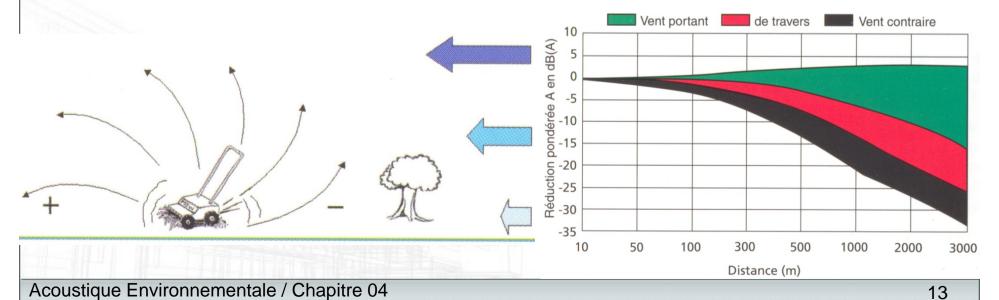
L'atténuation par dissipation s'ajoute à l'atténuation géométrique pour donner l'atténuation totale.

http://www.bbri.be

Humidité

Excepté pour des atmosphères très sèches et des basses températures, l'atténuation diminue si l'humidité augmente.

Les sons se propagent plus loin par temps humide que par temps sec.

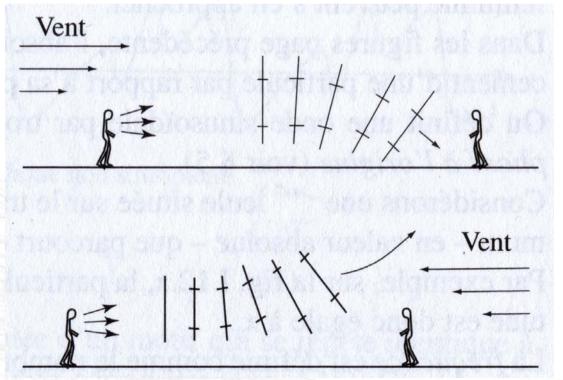

Vent

La vitesse du vent augmente avec l'altitude, rabattant vers le sol le trajet de propagation du son :

- création d'une zone favorable de propagation du côté vent portant de la source,
- création d'une zone défavorable de propagation du côté de la source contre le vent.

Influence négligeable sur des distances < 50 m mais importante au-delà.

- → Mesure côté vent portant : quelques dB de différence par rapport à une situation sans vent.
- → Mesure contre le vent : zone d'ombre pouvant atteindre plus de 20 dB.



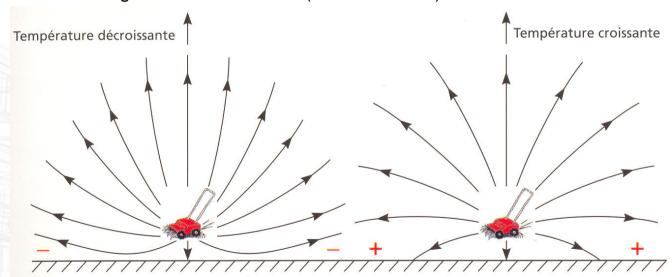
Vent

La vitesse du vent augmente avec l'altitude, rabattant vers le sol le trajet de propagation du son :

- création d'une zone favorable de propagation du côté vent portant de la source,
- création d'une zone défavorable de propagation du côté de la source contre le vent.

Température

Rappel Chapitre 01 : Référence : 340 m/s dans l'air

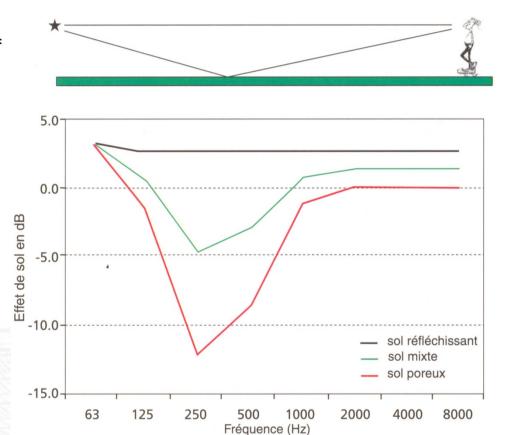

Variation avec la température (en kelvin) selon : $c = 20\sqrt{T}$

 \mathcal{L} Exemple : T = 0°C \rightarrow c = 330 m/s

Effets surtout marqués tout autour de la source.

Journée ensoleillée : T° diminue avec l'altitude : zone défavorable à la propagation (le son "monte").

Par nuit claire: T° augmente avec l'altitude (inversion de T°): le bruit est rabattu vers le sol.


Nature du sol

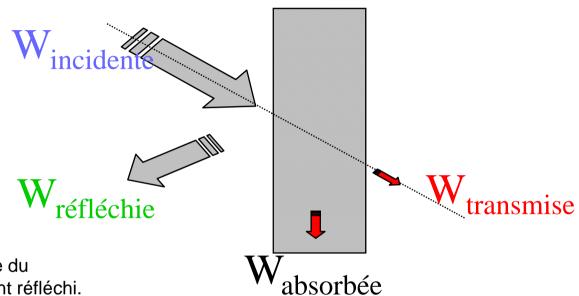
Niveau de bruit en un point récepteur en champ libre = somme :

- Du bruit qui va directement de la source au récepteur,
- Du bruit qui arrive au récepteur après réflexion sur le sol.

Cet effet de sol varie avec l'état de surface et la FREQUENCE :

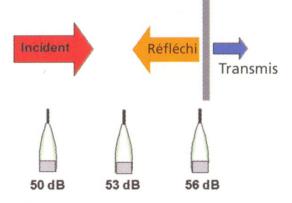
- Réfléchissant : eau, béton...
- Absorbant : herbes, arbres, végétation,
- Mixte.
- Présence de neige ou de pluie (mesures déconseillées)

http://www.bbri.be


Réflexions

Quand le bruit arrive sur une surface :

- Une partie est réfléchie,
- Une partie est transmise,
- Une partie est absorbée.


Sur les façaces, l'énergie réfléchie est très importante.

→ Lp à proximité de la surface = somme du rayonnement direct et du rayonnement réfléchi.

Règlé générale : A 2 m d'un mur plein, le niveau est de 3 dB(A) supérieur au niveau qui serait mesuré si le mur était absent.

→ Conditions "champ libre" demandées dans la plupart des réglementations.

